

CONTAINER SECURITY IN

MICROSOFT AZURE

August 2018

Disclaimer
This document is for informational purposes only. MICROSOFT MAKE NO WARRANTIES, EXPRESS,

IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

This document is provided “as-is.” Information and views expressed in this document, including

URL and other internet website references, may change without notice. You bear the risk of

using it.

This document does not provide you with any legal rights to any intellectual property in any

Microsoft product. You may copy and use this document for your internal, reference purposes.

Some examples depicted herein are provided for illustration only and are fictitious. No real

association or connection is intended or should be inferred.

NOTE: Certain recommendations in this white paper may result in increased data, network, or

compute resource usage, and may increase your license or subscription costs.

© 2018 Microsoft. All rights reserved.

Executive summary
Container technology is causing a structural change in the cloud-computing world. Containers

make it possible to run multiple instances of an application on a single instance of an operating

system, thereby using resources more efficiently. Containers give organizations consistency and

flexibility. They enable continuous deployment because the application can be developed on a

desktop, tested in a virtual machine, and then deployed for production in the cloud. Containers

provide agility, streamlined operations, scalability, and reduced costs due to resource

optimization.

Because container technology is relatively new, many IT professionals have security concerns

about the lack of visibility and usage in a production environment. Development teams are

often unaware of security best practices. This white paper can help security operations teams

and developers in selecting approaches to secure container development and deployments on

the Microsoft Azure platform.

This paper describes containers, container deployment and management, and native platform

services. It also describes runtime security issues that arise with the use of containers on the

Azure platform. In figures and examples, this paper focuses on Docker as the container model

and Kubernetes as the container orchestrator. Most of the security recommendations also apply

to other container models from Microsoft partners on the Azure platform.

Contents
Executive summary ... 1

Container overview and use cases .. 2

Container services and technologies ... 4

Azure Kubernetes Service .. 5

Azure Container Instances... 6

Azure Container Registry ... 7

Security concerns for containers and their solutions .. 8

Kernel exploits ... 8

Denial-of-service attacks ... 8

Container breakouts .. 8

Poisoned images ... 8

Compromising secrets .. 9

Container Security Issues and Approaches ... 9

Use vulnerability management as part of your container development lifecycle 9

Scan for vulnerabilities before pushing images to the registry ... 10

Continue scanning in the registry ... 10

Map image vulnerabilities to running containers ... 10

Ensure that only approved images are used in your environment... 10

Permit only approved registries ... 10

Ensure the integrity of images throughout the lifecycle .. 10

Enforce least privileges in runtime .. 10

Reduce the container attack surface by removing unneeded privileges ... 11

Whitelist files and executables that the container is allowed to access or run 11

Enforce network segmentation on running containers .. 11

Monitor container activity and user access ... 11

Monitor container resource activity ... 12

Log all container administrative user access for auditing .. 12

Securing Docker containers in Azure Kubernetes Service .. 12

Image security ... 13

Test: network controls.. 14

Production: security tools and polices ... 15

Adding process restrictions .. 16

Security frameworks for container management and orchestration .. 16

Conclusion .. 17

Resources .. 17

GitHub repositories ... 17

Samples ... 17

Container security in Microsoft Azure Container overview and use cases

© 2018, Microsoft Corporation 2

Container overview and use cases
A container image is a lightweight, standalone, executable package that includes everything

needed to run an application. It includes the app, system tools, system libraries, settings for the

application, and more. Containers differ from hypervisor-based virtual machines (VMs) in that

they run on a single copy of an operating system that’s running on the hardware. The following

figure compares containers and VMs:

When an app is containerized, the app and the components needed to run the app are

combined in a single image. Containers are then created from this image as needed. Companies

can use images as a baseline and build on them to create other images, making subsequent

image creation faster. Also, multiple containers can share the same image, which allows

containers to start very quickly and use fewer resources.

Although containers have existed for decades, companies like Docker have popularized the

approach of container images and container management, making them viable in today’s

datacenter. Historically, container technology was exclusively implemented on Linux-based

operating systems. But in the past few years, other modern operating systems, like Microsoft

Windows Server, have embraced container technology. In turn, the container development

community has embraced Windows Server.

The following chart compares traditional and containerized applications:

https://azure.microsoft.com/en-in/overview/containers/
https://docs.microsoft.com/en-us/dotnet/standard/microservices-architecture/container-docker-introduction/docker-defined

Container security in Microsoft Azure Container overview and use cases

© 2018, Microsoft Corporation 3

Containers as microservices are getting a lot of attention these days. In the modern world,

applications and their supported features are growing large and complex. Instead of building a

monolithic application, the increasingly popular idea among developers is to split applications

into sets of smaller, interconnected services.

Azure Service Fabric is a container and process orchestrator that’s part of the Microsoft Azure

platform. It can deploy applications that are running either in containers or as processes.

Containers have become popular in application development, especially in cloud computing.

This is largely due to containers becoming more portable, scalable, and simple to deploy. Here

are some common use cases for containers:

• Continuous integration (CI) and deployment:

Integrate containers into your existing agile and DevOps workflows by using Visual Studio

Team Services. Push Docker images to an authenticated registry and use Docker command-

line operations. Secure DevOps incorporates the security team and their capabilities into

your DevOps practices, making security a responsibility of everyone on the team. Adding

continuous security validation each step from development through production helps

ensure that the application is always secure.

• Containers as a service:

A Containers as a Service (CaaS) security strategy includes knowing when you’re at risk

through comprehensive monitoring and alerts. CaaS solutions enable you to query the

complete state of your container server cluster. They also enable you to access familiar

security features, such as security groups, user and access roles, and inter-container linkage

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview
https://azure.microsoft.com/en-us/solutions/devops/
https://www.visualstudio.com/team-services/
https://www.visualstudio.com/team-services/
http://searchitoperations.techtarget.com/definition/Containers-as-a-Service-CaaS

Container security in Microsoft Azure Container services and technologies

© 2018, Microsoft Corporation 4

rules. You can install additional security monitoring tools from Azure to enhance monitoring,

log management, and intrusion detection. This enables the use of security and monitoring

dashboards, which provide vulnerability and compliance information at a glance.

• Application modernization:

Docker Enterprise Edition (EE) enables IT operations to modernize traditional applications,

and then deploy them onto partners’ hybrid cloud infrastructures, without requiring

modifications to the source code. Containerizing the application without adjusting the

source code helps legacy applications gain hybrid cloud portability, increased security, and

cost efficiency.

• IT infrastructure optimization:

Containers offer portability. A Docker workload deployed to the cloud can be easily

migrated to the datacenter, either on “bare metal” or into a virtual machine. Containers offer

greater efficiency by using fewer resources than both virtual machine–based and bare-metal

deployments of the same workloads. For virtual machines, greater efficiency comes from

containers sharing the underlying operating system, versus requiring a dedicated operating

system for each application instance. For the bare-metal case, Docker container isolation

enables organizations to run multiple workloads on the same server with little overhead.

• Hybrid cloud:

Containers provide a couple of key advantages for hybrid clouds. First, they provide a layer

of abstraction between the containerized application and the native cloud platform on which

that application runs. Second, this abstraction from the underlying cloud platform allows

applications to move more easily from one cloud environment to another, including

between private and public clouds. Protecting your investments in legacy applications, tools,

and IT infrastructures while leveraging the benefits of more agile and scalable cloud services

is the catalyst for hybrid cloud deployments.

Container services and technologies
Containers have changed the way developers develop their applications, the way applications

are deployed, and the way system administrators manage their environments. Containers offer a

universally accepted and open standard, enabling simple portability between platforms and

between clouds.

The Microsoft Azure platform offers managed container services and supports additional

container technologies through the Azure Marketplace. The following figure illustrates the Azure

open-source container portfolio:

https://www.docker.com/enterprise-edition
https://docs.docker.com/engine/security/security/
https://azure.microsoft.com/en-in/overview/what-is-hybrid-cloud-computing/

Container security in Microsoft Azure Container services and technologies

© 2018, Microsoft Corporation 5

Azure Kubernetes Service

Azure Kubernetes Service (AKS)—previously called Azure Container Service—makes it simple to

create, configure, and manage a cluster of virtual machines that are preconfigured to run

containerized applications. This enables you to use your existing skills, or draw upon a large and

growing body of community expertise, to deploy and manage container-based applications on

Microsoft Azure.

The goal of AKS is to provide a container-hosting environment by using open-source tools and

technologies that are popular among customers today. AKS exposes the standard Kubernetes

API endpoints. By using these standard endpoints, you can take advantage of any software that

can talk to a Kubernetes cluster. For example, you might choose kubectl, Helm, or Draft.

AKS reduces the complexity and operational overhead of managing a Kubernetes cluster by

offloading much of that responsibility to Azure. Azure handles critical tasks like health

monitoring and maintenance for you.

AKS provides:

• Automated Kubernetes version upgrades and patching.

• Easy cluster scaling.

• Self-healing hosted control plane (masters).

• Cost savings—pay only for the agent pool nodes that are running in your clusters.

With Azure handling the management of the nodes in your AKS cluster, you no longer need to

perform many tasks manually, like cluster upgrades. AKS does not provide direct access (such as

with SSH) to the cluster.

https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://kubernetes.io/docs/user-guide/kubectl-overview/
https://helm.sh/
https://github.com/Azure/draft

Container security in Microsoft Azure Container services and technologies

© 2018, Microsoft Corporation 6

AKS is also integrated with Azure Active Directory (Azure AD) and the following controls:

• Azure Active Directory Integration

o kubectl OIDC authentication

o Azure AD device authentication for 2FA

• Kubernetes role-based access control (RBAC)

Monitoring Azure Kubernetes Service with Azure Monitor container health

Container health offers performance monitoring by collecting memory and processor metrics

from controllers, nodes, and containers available in Kubernetes through the Metrics API. After

you enable container health, these metrics are automatically collected for you. They’re collected

through containerized version of the OMS Agent for Linux and stored in your Azure Log

Analytics workspace.

The predefined views show the residing container workloads and what is affecting the

performance health of the Kubernetes cluster. You can then:

• See what containers are running on the node and their average processor and memory

utilization to identify resource bottlenecks.

• Identify where the container resides in a controller and/or pods to see the overall

performance for a controller or pod.

• Review the resource utilization of workloads that are running on the host but are

unrelated to the standard processes that support the pod.

• Understand the behavior of the cluster under average and heaviest load to help identify

capacity needs and determine the maximum load that it can sustain.

For details, see the blog post Monitoring Azure Kubernetes Service (AKS) with Azure Monitor

container health (preview).

Azure Container Instances

Azure Container Instances offers the fastest and simplest way to run a container in Azure,

without having to provision any virtual machines and without having to adopt a higher-level

service. With ACI, containers offer RBAC on the instance and billing tags to track usage at the

individual container level.

The ACI Connector for Kubernetes is an open-source connector that enables Kubernetes clusters

to deploy to Azure Container Instances. It enables on-demand and nearly instantaneous

container compute, orchestrated by Kubernetes, without having VM infrastructure to manage. It

takes advantage of the portable Kubernetes API.

The ACI Connector allows Azure Container Instances and VMs to be used simultaneously in the

same Kubernetes cluster. Azure Container Instances can be used for fast bursting and scaling,

whereas VMs can be used for the more predictable scaling. Workloads can even migrate back

https://kubernetes.io/docs/admin/authentication/
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/app-based-mfa
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/app-based-mfa
https://kubernetes.io/docs/admin/authorization/rbac/
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-overview
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-overview
https://azure.microsoft.com/en-us/blog/monitoring-azure-kubernetes-service-aks-with-azure-monitor-container-health-preview/
https://azure.microsoft.com/en-us/blog/monitoring-azure-kubernetes-service-aks-with-azure-monitor-container-health-preview/
https://docs.microsoft.com/en-us/azure/container-instances/
https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-what-is
https://azure.microsoft.com/en-in/blog/announcing-azure-container-instances/

Container security in Microsoft Azure Container services and technologies

© 2018, Microsoft Corporation 7

and forth between these underlying infrastructure models. This migration offers a level of agility

for deploying Kubernetes. It enables services that start in seconds without any underlying VMs

and are billed and scaled per second.

Here’s a sample project that shows how to perform ETL (extract, load, transform) jobs by using

Azure Container Instances: Extracting, transforming, and loading data with Azure Container

Instances.

Azure Container Registry

You can use Azure Container Registry to store images for all types of container deployments.

These deployments include DC/OS, Docker Swarm, Kubernetes, and Azure services such as

Azure App Service, Batch, and Service Fabric. Your DevOps team can manage the configuration

of apps that are isolated from the configuration of the hosting environment.

To provide scale across the global footprint of Azure, Azure Container Registry supports geo-

replication. Through the click of a map, you can manage a single registry that’s replicated across

any number of regions. Any push/pull of a container image to Azure Container Registry is

routed to the closest registry.

Azure Container Registry geo-replication enables customers to manage their global

deployments as one entity. The geo-replication feature caters to customers who operate at

global scale.

You can create container groups by using the following samples:

• To create a container group by using images from a private registry by using C#, see

Getting started with ACI - Manage with Azure Container Registry - in .NET.

• To create a container group with multiple instances and container images by using C#,

see Getting started with ACI - Manage with multiple container images - in .NET.

https://docs.microsoft.com/en-us/azure/container-service/kubernetes/container-service-tutorial-kubernetes-deploy-cluster
https://azure.microsoft.com/en-us/resources/samples/aci-extract-load-transform-sample/
https://azure.microsoft.com/en-us/resources/samples/aci-extract-load-transform-sample/
https://docs.microsoft.com/en-us/azure/container-registry/
https://azure.microsoft.com/en-us/resources/deploying-microservices-and-containers-with-azure-container-service-and-dc-os/en-us/
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-docker-swarm
https://azure.microsoft.com/en-us/resources/samples/aci-dotnet-create-container-groups-using-private-registry/
https://azure.microsoft.com/en-us/resources/samples/aci-dotnet-create-container-groups/

Container security in Microsoft Azure Security concerns for containers and their solutions

© 2018, Microsoft Corporation 8

Security concerns for containers and their solutions
Containers are not inherently vulnerable. But as with all IT technologies, it’s important to adhere

to strict guidelines and procedures for security. The following guidelines and procedures

address operational practices more than technical practices.

For example, privilege escalation, repository validation, and image signing represent special

threats in the container world. These are new constructs, and people who are unfamiliar with

them might not know the proper way to govern and work with them.

Networking in a container deployment is another special area that needs to be addressed in

security scenarios. Unlike VMs, containers have open network traffic across services and a shared

kernel—which is a serious security concern. However, you could make the case that VMs are less

secure than containers because breaking applications into microservices with well-defined

interfaces and limited packaged services reduces the overall attack surface.

To use containers safely, you need to be aware of the potential security issues and the major

tools and techniques for securing container-based systems.

Kernel exploits

Unlike in a VM, the kernel is shared among all containers and the host. This sharing magnifies

the importance of any vulnerabilities in the kernel.

Denial-of-service attacks

All containers share kernel resources. If one container can monopolize access to certain

resources—including memory and user IDs—it can starve out other containers on the host. The

result is a denial of service (DoS), whereby legitimate users are unable to access part or all the

system.

For example, opening sockets repeatedly will slow the entire host machine and eventually cause

it to stop working.

Container breakouts

An attacker who gains access to a container should not be able to gain access to other

containers or the host. By default, users are not included in the container namespace, so any

process that breaks out of the container will have the same privileges on the host as it did in the

container. If you were root in the container, you will be root on the host. You need to prepare

for potential privilege escalation attacks—whereby a user gains elevated privileges such as those

of the root user.

Poisoned images

How do you know that the images you’re using are safe, haven’t been tampered with, and come

from where they claim to come from? If an attacker can trick you into running an image, both

Container security in Microsoft Azure Container Security Issues and Approaches

© 2018, Microsoft Corporation 9

the host and your data are at risk. Similarly, you want to be sure that the images you’re running

are up to date and don’t contain versions of software with known vulnerabilities.

Compromising secrets

When a container accesses a database or service, it likely requires a secret, such as an API key or

a username and password. An attacker who can get access to this secret will also have access to

the service. This problem becomes more acute in a microservice architecture in which containers

are constantly stopping and starting, as compared to an architecture with small numbers of

long-lived VMs.

Container Security Issues and Approaches
Compared to VMs, containers are much smaller and more efficient. For an application to run in a

virtual machine, the application runs on a guest operating system, and the guest operating

system requires a hypervisor on a server. Containers share the host operating system kernel with

other containers via API calls.

Organizations need to understand the security issues that arise from the differences in how VMs

and containers function. Prepare for the glut of additional files that need protection with

containers and the unwieldy nature of partner libraries that containers use. Organizations that

adopt containers need to accept responsibility for securing them, and should stay informed

about new container vulnerabilities as the industry discovers them.

Sharing of the host operating system kernel is one of the primary benefits of containers, but it’s

also the crux of security concerns with containers. The lack of proper isolation between

containers and the kernel during runtime means that a vulnerability in the shared OS kernel can

be used to gain access to or exploit the containers.

Another element of concern in securing containers is their volatile and dynamic nature.

Hundreds or thousands of containers can be created or destroyed in an instant to scale with

demand. They are often short lived and have dynamic IP addresses. The volume of potentially

vulnerable endpoints makes identifying and resolving security issues a challenging task.

The following security measures, implemented well and managed effectively, can help you

secure and protect your container ecosystem.

Use vulnerability management as part of your container development

lifecycle

By using effective vulnerability management throughout the container development lifecycle,

you improve the odds that you can identify and resolve security concerns before they become a

more serious problem.

Container security in Microsoft Azure Container Security Issues and Approaches

© 2018, Microsoft Corporation 10

Scan for vulnerabilities before pushing images to the registry

A container image registry is a service that stores container images and is hosted either by a

partner or as a public/private registry such as DockerHub and Quay.

As a final check after container development is complete, you should perform a vulnerability

scan on containers before pushing the images to the registry.

Continue scanning in the registry

New vulnerabilities are discovered all the time, so scanning for and identifying vulnerabilities is a

continuous process. Continue to scan container images in the registry both to identify any flaws

that were somehow missed during development and to address any newly discovered

vulnerabilities that might exist in the code used in the container images.

Map image vulnerabilities to running containers

You need to have a means of mapping vulnerabilities identified in container images to running

containers, so security issues can be mitigated or resolved.

Ensure that only approved images are used in your environment

There’s enough change and volatility in a container ecosystem without allowing unknown

containers as well. Allow only approved container images. Have tools and processes in place to

monitor for and prevent the use of unapproved container images.

An effective way of reducing the attack surface and preventing developers from making critical

security mistakes is to control the flow of container images into your development environment.

For example, you might sanction a single Linux distribution as a base image, preferably one that

is lean (Alpine or CoreOS rather than Ubuntu) to minimize the surface for potential attacks.

Image signing or fingerprinting can provide a chain of custody that enables you to verify the

integrity of the containers.

Permit only approved registries

An extension of ensuring that your environment uses only approved images is to permit only

the use of approved container registries. Requiring the use of approved container registries

reduces your exposure to risk by limiting the potential for the introduction of unknown

vulnerabilities or security issues.

Ensure the integrity of images throughout the lifecycle

Part of managing security throughout the container lifecycle is to ensure the integrity of the

container images in the registry and as they are altered or deployed into production.

Enforce least privileges in runtime

The concept of least privileges is a basic security best practice that also applies to containers.

When a vulnerability is exploited, it generally gives the attacker access and privileges equal to

Container security in Microsoft Azure Container Security Issues and Approaches

© 2018, Microsoft Corporation 11

those of the compromised application or process. Ensuring that containers operate with the

lowest privileges and access required to get the job done reduces your exposure to risk.

Reduce the container attack surface by removing unneeded privileges

You can also minimize the potential attack surface by removing any unused or unnecessary

processes or privileges from the container runtime.

Privileged containers run as root. If a malicious user or workload escapes in a privileged

container, the container will then run as root on that system.

Whitelist files and executables that the container is allowed to access or run

Reducing the number of variables or unknowns helps you maintain a stable, reliable

environment. Limiting containers so they can access or run only preapproved or whitelisted files

and executables is a proven method of limiting exposure to risk.

It’s a lot easier to manage a whitelist when it’s implemented from the beginning. A whitelist

provides a measure of control and manageability as you learn what files and executables are

required for the application to function correctly.

A whitelist not only reduces the attack surface but can also provide a baseline for anomalies and

prevent the use cases of the “noisy neighbor” and container breakout scenarios.

Enforce network segmentation on running containers

To help protect containers in one segment from security risks in another segment, maintain

network segmentation (or nano-segmentation) or segregation between running containers.

Maintaining network segmentation may also be necessary for using containers in industries that

are required to meet compliance mandates.

For example, the partner tool Aqua provides an automated approach for nano-segmentation.

Aqua monitors container network activities in runtime. It identifies all inbound and outbound

network connections to/from other containers, services, IP addresses, and the public internet.

Nano-segmentation is automatically created based on monitored traffic.

Monitor container activity and user access

As with any IT environment, you should consistently monitor activity and user access to your

container ecosystem to quickly identify any suspicious or malicious activity. The container

monitoring solution in Log Analytics can help you view and manage your Docker and Windows

container hosts in a single location.

By using Log Analytics, you can:

• View detailed audit information that shows commands used with containers.

• Troubleshoot containers by viewing and searching centralized logs without having to

remotely view Docker or Windows hosts.

https://blog.aquasec.com/network-nano-segmentation-for-container-security-in-aqua-2.0
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/aqua-security.aquasec-csp-2_5?tab=Overview
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-containers
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-containers
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-containers

Container security in Microsoft Azure Securing Docker containers in Azure Kubernetes Service

© 2018, Microsoft Corporation 12

• Find containers that may be noisy and consuming excess resources on a host.

• View centralized CPU, memory, storage, and network usage and performance

information for containers.

On computers running Windows, you can centralize and compare logs from Windows Server,

Hyper-V, and Docker containers. The solution supports container orchestrators such as Docker

Swarm, DC/OS, Kubernetes, Service Fabric, and Red Hat OpenShift.

Monitor container resource activity

Monitor your resource activity, like files, network, and other resources that your containers

access. Monitoring resource activity and consumption is useful both for performance monitoring

and as a security measure.

Azure Monitor enables core monitoring for Azure services by allowing the collection of metrics,

activity logs, and diagnostic logs. For example, the activity log tells you when new resources are

created or modified.

Metrics are available that provide performance statistics for different resources and even the

operating system inside a virtual machine. You can view this data with one of the explorers in

the Azure portal and create alerts based on these metrics. Azure Monitor provides the fastest

metrics pipeline (5 minutes down to 1 minute), so you should use it for time-critical alerts and

notifications.

Log all container administrative user access for auditing

Maintain an accurate audit trail of administrative access to your container ecosystem, container

registry, and container images. These logs might be necessary for auditing purposes and will be

useful as forensic evidence after any security incident. You can use the Container Monitoring

management solution in Azure Log Analytics to achieve this purpose.

Securing Docker containers in Azure Kubernetes Service

Microsoft Azure provides integrated security throughout the container development lifecycle.

There are three integration points for this security:

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-containers
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-containers
https://docs.microsoft.com/en-in/azure/container-service/dcos-swarm/container-service-security

Container security in Microsoft Azure Securing Docker containers in Azure Kubernetes Service

© 2018, Microsoft Corporation 13

Image security

Containers are built from images that are stored in one or more repositories. These repositories

can belong to public or private container registries like Docker Hub.

An example of a private registry is the Docker Trusted Registry, which can be installed on-

premises or in a virtual private cloud. There are also cloud-based private container registry

services, including Azure Container Registry. A publicly available container image does not

guarantee security. Container images consist of multiple software layers, and each software layer

might have vulnerabilities.

To help prevent attacks, users should store and retrieve images from a private registry, such as

Azure Container Registry or Docker Trusted Registry. In addition to providing a managed private

registry, Azure Container Registry supports service principal-based authentication through Azure

Active Directory for basic authentication flows. This authentication includes role-based access

for read-only, write, and owner permissions.

Security monitoring and scanning solutions such as Twistlock and Aqua are available through

the Azure Marketplace. You can use them to scan container images in a private registry and

identify potential vulnerabilities. It’s important to understand the depth of scanning that the

different solutions provide.

Containers can spread across several clusters and Azure regions. So you must secure credentials

required for logins or API access, such as passwords or tokens. Ensure that only privileged users

https://hub.docker.com/
https://docs.docker.com/datacenter/dtr/2.0/
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-security
https://docs.microsoft.com/th-th/azure/container-registry/container-registry-intro
https://docs.microsoft.com/th-th/azure/container-registry/container-registry-authentication
https://www.twistlock.com/2016/11/07/twistlock-supports-azure-container-registry
http://blog.aquasec.com/image-vulnerability-scanning-in-azure-container-registry

Container security in Microsoft Azure Securing Docker containers in Azure Kubernetes Service

© 2018, Microsoft Corporation 14

can access those containers in transit and at rest. Inventory all credential secrets, and then

require developers to use emerging secrets-management tools that are designed for container

platforms.

Make sure that your solution includes encrypted databases, TLS encryption for secrets data in

transit, and least-privilege RBAC role access controls. Azure Key Vault is a cloud service that

safeguards encryption keys and secrets (such as certificates, connection strings, and passwords)

for containerized applications. Because this data is sensitive and business critical, secure access

to your key vaults so that only authorized applications and users can access them.

Test: network controls

You must secure the runtime environment (host, kernel, Docker, orchestration tools) before

running application containers live in production.

Azure virtual networks are secure, logical networks that provide network isolation. They provide

security controls to configure network segmentation and create security layers between

containers. Customers create their own structure by using subnets. They use their own private IP

address range and configure route tables, network security groups, access control lists (ACLs),

gateways, and virtual appliances to run containers on Microsoft Azure.

You can set up the following network controls with AKS deployment:

• Agent pools in new and custom virtual networks:

AKS contains agent nodes in two pools, a public pool and a private pool. An application

can be deployed to either pool, affecting accessibility between machines in your

container service. The machines can be exposed to the internet (public) or kept internal

(private).

The private pool contains the number of agent nodes that you specify when you deploy

the DC/OS cluster. The public pool initially contains a predetermined number of agent

nodes. This pool is added automatically when the DC/OS cluster is provisioned.

• Configurable addressing with PodCIDR and ServiceCIDR.

• Container Networking Interface (CNI) support:

You can use the CNI plug-in to deploy and manage your own Kubernetes cluster, with

native Azure networking capability. The plug-in is enabled, by default, when you deploy

Kubernetes clusters with the Azure Container Service Engine (or acs-engine).A pod can

connect to other pods and virtual machines in peered virtual networks and to on-

premises networks, over ExpressRoute and site-to-site VPN connections. On-premises

resources can communicate with pods. Pods in a subnet that has service endpoints

enabled can securely connect to Azure services (Azure Storage and SQL Database, for

example) by using the CNI plug-in.

https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-what-is
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-secure-your-key-vault
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-dcos-agents
https://docs.microsoft.com/en-us/azure/container-service/kubernetes/container-service-scale
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-dcos-agents#deploy-agent-pools
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-dcos-quickstart
https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-dcos-quickstart
https://kubernetes.io/docs/getting-started-guides/scratch/#kubelet
https://kubernetes.io/docs/getting-started-guides/scratch/#apiserver-pod-template
https://github.com/Azure/azure-container-networking/blob/master/docs/cni.md
https://github.com/Azure/acs-engine
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-endpoints-overview

Container security in Microsoft Azure Securing Docker containers in Azure Kubernetes Service

© 2018, Microsoft Corporation 15

• Azure Application Gateway Ingress Controller.

When a customer deploys container applications on Azure resources, they’re deployed at a

subscription level in resource groups and are not multi-tenant. If that customer shares a

subscription with others, no boundaries can be built between two deployments in the same

subscription. Container-level security is not guaranteed.

Containers share the kernel and the resources of the host. Containers in production must be run

in non-privileged user mode. Running a container with root privileges can compromise the

entire environment.

It’s important to run containers with read-only file systems. This prevents someone who has

access to the compromised container from writing malicious scripts to the file system and

gaining access to other files. Similarly, it’s important to limit the resources (such as memory)

allocated to a container. This helps prevent hackers from hogging resources and pursuing illegal

activities, which might prevent other containers from running on the host or cluster.

Production: security tools and polices

After an application is deployed in production, set a few rules to ensure that images used in

production environments are secure and contain no vulnerabilities:

• Images with vulnerabilities, even minor, should not be allowed to run in a production

environment. Ideally, all images deployed in production should be saved in a private

registry accessible to a select few. Keep the number of production images small to

ensure that they can be managed effectively.

• Because it’s hard to pinpoint the origin of software from a publicly available container

image, build images from the source to ensure knowledge of the origin of the layer.

When a vulnerability surfaces in a self-built container image, customers can find a

quicker path to a resolution. With a public image, customers would need to find the root

of a public image to fix it or get another secure image from the publisher.

• A thoroughly scanned image deployed in production is not guaranteed to be up-to-date

for the lifetime of the application. Security vulnerabilities might be reported for layers of

the image that were not previously known or were introduced after the production

deployment. Periodically audit images deployed in production to identify images that are

out of date or have not been updated in a while. You might use blue-green deployment

methodologies and rolling upgrade mechanisms to update container images without

downtime. You can scan images by using tools described in the preceding section.

• A continuous integration (CI) pipeline to build images and integrated security scanning

can help maintain secure private registries with secure container images. The

vulnerability scanning built into the CI solution ensures that images that pass all the tests

are pushed to the private registry from which production workloads are deployed. A CI

pipeline failure ensures that vulnerable images are not pushed to the private registry

https://github.com/kubernetes/ingress-nginx
https://searchitoperations.techtarget.com/definition/blue-green-deployment

Container security in Microsoft Azure Security frameworks for container management and

orchestration

© 2018, Microsoft Corporation 16

that’s used for production workload deployments. It also automates image security

scanning if there’s a significant number of images. Otherwise, manually auditing images

for security vulnerabilities can be painstakingly lengthy and error prone.

The Azure Marketplace provides other partner tools for full-stack security, including vulnerability

scanning, run-time protection, and compliance through Aqua, Sysdig Secure, or Twistlock.

Adding process restrictions
Restricting access and capabilities reduces the surface area that’s potentially vulnerable to

attack. Docker’s default settings are designed to limit Linux capabilities. Although the traditional

view of Linux considers OS security in terms of root privileges versus user privileges, modern

Linux has evolved to support a more nuanced privilege model: capabilities.

Linux capabilities allow granular specification of user capabilities. Traditionally, the root user has

access to every capability. Typical non-root users have a more restricted capability set but are

usually given the option to elevate their access to root level by using sudo or setuid binaries.

This ability might be a security risk.

The default bounding set of capabilities inside a Docker container is less than half the total

capabilities assigned to a Linux process. This reduces the possibility of escalation to a fully

privileged root user through application-level vulnerabilities. Docker uses an extra degree of

detail, which dramatically expands on the traditional root/non-root dichotomy.

In most cases, the application containers don’t need all the capabilities attributed to the root

user, because most tasks that require this level of privilege are handled by the OS environment

external to the container. Containers can run with a reduced capability set that does not

negatively affect the application and yet improves the overall security system levels and makes

running applications more secure by default. It’s then difficult to provoke system-level damages

during intrusion, even if the intruder manages to escalate to root within a container, because the

container capabilities are fundamentally restricted.

Security frameworks for container management and orchestration
A container management framework is a solution for building, shipping, and deploying your app

in containers. Docker, as a container, has become a standard.

Container management frameworks help you to build a Container as a Service (CaaS) solution. In

the CaaS model, IT organizations and developers can work together to build, ship, and run their

applications anywhere. CaaS enables an IT-secured and managed application environment that

consists of content and infrastructure. From this environment, developers can build and deploy

applications in a self-service manner.

Here are some popular container management frameworks:

• Docker Enterprise

https://rancher.com/container-security-tools-need-know/
https://www.aquasec.com/
https://sysdig.com/product/secure/
https://www.twistlock.com/
https://www.docker.com/enterprise-edition

Container security in Microsoft Azure Resources

© 2018, Microsoft Corporation 17

• Red Hat OpenShift

• Mesosphere Enterprise DC/OS

• CoreOS Tectonic

• Rancher

• Apcera

• Apprenda

The choice of the orchestration layer often drives the choice of selecting the container

management framework. Popular container orchestration tools include:

• Docker Swarm

• Kubernetes

• Apache Mesos

Conclusion
Enterprises should watch container technology to see how they can take advantage of it. As with

all nascent technologies, there are caveats to watch out for—and best practices and policies to

adhere to—in a container deployment. The Microsoft Azure platform has fully managed

container services that are integrated with identity and access management (IAM) capabilities:

authentication, authorization, and single sign-on or federation. These services also provide

encrypted communications to secure data in transit. And they fully support network controls to

lock down kernel resources.

A comprehensive security program uses a mixture of Microsoft Azure and partner solutions to

fill in gaps, and it covers much more than just the container runtime environment. Container

technology is maturing, but most of what you need to deliver and manage container security is

available in the Azure platform today.

Resources

GitHub repositories

• Azure Container Registry

• Manage Azure Container Instances

• Deploy and connect to a Docker container in an Azure cluster

Samples

• Docker samples

• Service Fabric container samples

https://www.openshift.com/
https://mesosphere.com/product/
https://coreos.com/tectonic/
http://rancher.com/
https://www.apcera.com/
https://apprenda.com/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
http://mesos.apache.org/
https://github.com/Azure/acr
https://github.com/Azure-Samples/container-instances-python-manage
https://github.com/Azure-Samples/container-service-python-manage
https://github.com/dockersamples
https://github.com/Azure-Samples/service-fabric-containers

Container security in Microsoft Azure Resources

© 2018, Microsoft Corporation 18

• Manage with Azure Container Registry - in .NET

• Manage with multiple container images - in .NET

• Manage Container Service with Kubernetes Orchestrator - in .NET

https://azure.microsoft.com/en-us/resources/samples/aci-dotnet-create-container-groups-using-private-registry/
https://azure.microsoft.com/en-us/resources/samples/aci-dotnet-create-container-groups/
https://github.com/Azure-Samples/acs-dotnet-manage-azure-container-service-with-kubernetes-orchestrator

